Pyrometallurgical Recycling Process Routes

- Distribution analysis of valuable metals and the economic consequences

Dzeneta Vrucak¹, Linda Reinhart², Richard Woeste², Dr. Elinor Rombach¹, Prof. Peter Letmathe², Prof. Bernd Friedrich¹

¹RWTH Aachen Institute for Process Metallurgy and Metal Recycling | Intzestr.3, 52056 Aachen

Mail: dvrucak@ime-aachen.de | Phone: +49 241 8095873

²RWTH Aachen Chair of Management Accounting | Templergraben 64, 52062 Aachen

Mail: reinhart@controlling.rwth-aachen.de | Phone: +49 241 8095626

Recycling of Lithium-Ion Batteries and their **Economic Efficiency**

Development trend of cathode material of LIB: from LCO to mixed oxides to cobalt-free spinels and phosphates → economic feasibility of recycling may become increasingly difficult because of lower valuable metals content

Considered Lithium-Ion Batteries

Fictitious modeling of the recycling of batteries mainly consisting of the following cell chemistries as feed in pyrometallurgical recycling processes

Considered Pyrometallurgical Recycling Process Routes

Dismantling from Pack to Module/Cell Level

Mechanical Processing of thermally treated LIB Cells

By utilizing different properties of the components contained in the material flow, concentrated fractions can be obtained in the Multi-Step recycling process, such as

- Ferrous Fraction (Fe)
- Non-ferrous Fraction (Cu, Al)
- **Active mass**

Smelting of Cells/Active mass

- Lithium, Graphite, Manganese, Aluminum are not recovered pyrometallurgically regardless the chosen process route
 - → Graphite as reductant
 - → Lithium, Aluminum and Manganese in slag

Valuable Metals: Cobalt, Nickel, Copper

Potential Revenues from Recycling different Cathode Materials

- Calculation based on Input of one ton of LIB packs with different cathode material (idealized), market prices based on data from 2021
- Obtained fractions at dismantling not considered here → not affected by different cathode materials

Costs incurred during the recycling steps are not considered here

Fraction

Economic recycling of batteries is strongly dependent on respective cell chemistry → disposer fee more important in future

References

Arnberger et al.: Recycling von Lithium-Ionen-Batterien, In: Recycling und Rohstoffe 11 (2018), pp. 583–599, ISBN 978-3-944310-40-4 Sommerfeld et al.: A Combined Pyro- and Hydrometallurgical Approach to Recycle Pyrolyzed Lithium-Ion Battery Black Mass Part 1: Production of Lithium Concentrates in an Electric Arc Furnace, Metals 10 (2020) 8, pp.1069-1096, DOI: 10.3390/met10081069

Velázquez-Martínez et al.: A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective, Batteries 5 (2019) 4, pp.68-101, DOI: 10.3390/batteries5040068

Acknowledgements

The presented contents are based on a project funded by the German Federal Ministry of Education and Research under the grant number 03XP0302C The authors are responsible for the contents of this publication.

