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Abstract: In the coming years, the demand for safe electrical energy storage devices with high energy

density will increase drastically due to the electrification of the transportation sector and the need for

stationary storage for renewable energies. Advanced battery concepts like all-solid-state batteries

(ASBs) are considered one of the most promising candidates for future energy storage technologies.

They offer several advantages over conventional Lithium-Ion Batteries (LIBs), especially with regard

to stability, safety, and energy density. Hardly any recycling studies have been conducted, yet, but such

examinations will play an important role when considering raw materials supply, sustainability of

battery systems, CO2 footprint, and general strive towards a circular economy. Although different

methods for recycling LIBs are already available, the transferability to ASBs is not straightforward due

to differences in used materials and fabrication technologies, even if the chemistry does not change

(e.g., Li-intercalation cathodes). Challenges in terms of the ceramic nature of the cell components

and thus the necessity for specific recycling strategies are investigated here for the first time. As a

major result, a recycling route based on inert shredding, a subsequent thermal treatment, and a

sorting step is suggested, and transferring the extracted black mass to a dedicated hydrometallurgical

recycling process is proposed. The hydrometallurgical approach is split into two scenarios differing

in terms of solubility of the ASB-battery components. Hence, developing a full recycling concept is

reached by this study, which will be experimentally examined in future research.

Keywords: battery recycling; all-solid-state batteries; metallurgical recycling; metal recovery;

recycling efficiency

1. Introduction

Generally, continued operation of batteries after their typical end of life (80% of nominal capacity),

often referred to as “second life”, has both environmental and economic benefits. However, due

to required testing protocols and safety as well as reliability issues, this second life exploitation is

challenging [1]. At the end of the first or the second life, normal recycling needs to be exploited to
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lower environmental impact of battery fabrication and move further towards a circular economy.

The recycling of LIBs is already established on the industrial scale using specific process routes [2].

The following section provides an overview on possible recycling paths. However, many more

processes are investigated in both industry and research, so this elaboration is an overview and

not full literature review. Moreover, in the following section, industry and research activities are

not differentiated, as the focus will be presenting options for Li-Ion battery recycling and hence,

their possible application to ASBs. The most direct way to reuse battery materials is by reconditioning

the active materials for direct fabrication of new cells [2]. If this is not possible (e.g., due to cell

performance), elemental recycling strategies based on the combination of two different process modules

are in place: Pre-treatments and metal extraction processes [3].

Within pre-treatments, discharging is crucial to safely process the batteries further. This can

be realized by immersing the used battery into a salt solution [4] or by a thermal treatment,

e.g., a pyrolysis, as a deactivation step [5]. During this thermal pre-treatment, organics and binders

are decomposed and evaporated, leaving the reactor via the off-gas stream [6]. The applied thermal

treatment can either occur by generating an inert gas or vacuum atmosphere, thus in an oxygen-free

environment (pyrolysis), or in oxygen-containing environment (incineration/thermolysis) [4,7].

After completing the thermal treatment, a mechanical treatment consisting of comminution and

separation is possible. The separation can be realized by making use of physical properties or a

sieving operation [8]. An alternative sequence is the deactivation of the batteries in a salt solution,

a mechanical treatment, and a subsequent thermal treatment [9–12]. Here, before the thermal treatment,

the batteries are either shredded and then sorted by means of physical properties [10], or directly

manually dismantled to extract specifically the electrode foils with the attached active mass [9,12].

A third method combines inert/cryogenic shredding and a subsequent thermal treatment [13]. This brief

overview gives the three main approaches regarding pre-treatment steps. There are differences in

applied atmospheres and temperatures, but in most cases, a better removability of black mass, especially

on the cathode side, from substrate foils is reported when applying a thermal treatment. This can be

explained considering the following: Within battery design, a good adhesion between substrate foils

and active materials is crucial, which is realized by applying a strong binder. The binder compounds

can be cracked and removed in the thermal treatment. Moreover, the removal of the binder and

other organics is a suitable tool for easing the downstream hydrometallurgical treatments, since the

organic compounds are hardly soluble in leaching steps [7,12]. On the other hand, a challenge in direct

shredding and in thermal pre-treatment is the need for extensive off-gas cleaning [4,14].

Within the metal extraction, there are different chemical approaches, such as hydrometallurgy

and pyrometallurgy [15]. Hydrometallurgical processes offer many different solvents for leaching and

also target phases of the battery components. They can be classified by the type of leaching media:

Mineral acids, alkalis, and organic acids. For instance, processes based on mineral acids, such as

sulfuric acid (H2SO4) or hydrochloric acid (HCl), or organic acids, such as ascorbic acid together with

hydrogen peroxide (H2O2), have reached satisfying yields [16]. Altogether, hydrometallurgy requires

less energy, and due to its selectivity high purities can be obtained. Nonetheless, mechanical and/or

thermal pre-treatments are essential [14].

Pyrometallurgy generally is a high efficient concentration operation and comprises of the smelting

of batteries transferring noble metals to an alloy, which then will be purified by hydrometallurgical

refining steps [14,17]. Rather ignoble, and depending on the operation temperatures, partly volatile

metals will be transferred to a slag phase or a flue dust [18]. This path is industrially widely applied [18]

due to its high robustness and productivity [19]. In addition, pyrometallurgy is robust regarding

the input stream’s heterogeneity, which is why battery scrap can be treated along with persisting

primary production lines of metals like cobalt (Co) [20]. Since lithium (Li) cannot be recovered by

pyrometallurgical methods as metal, a downstream slag purification by means of hydrometallurgy is

also a subject of research [21].
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In conclusion, different process modules can be combined to design the most effective recycling

process for each cell design and, vice versa, cell can be designed to promote effective recycling.

The main scrap volumes of LIBs recycling are presently based on consumer batteries, and partly

also on Hybrid Electric Vehicles/ Electric Vehicles (HEV/EV) traction batteries [22]. The EV scrap

volumes that are available for recycling are comparatively low, but if this status-quo changes in the

future towards an increased use of electrification in the mobility sector, some recycling paths will turn

out to be more viable if they benefit from scale effects [2]. Today’s industrial recycling paths focus mainly

on the valuable elements; however, LIBs are complex and materials from different applications or

generations are often accompanied by changing compositions [22,23]. Since the second life application

rates are currently very low in industrial processes [24], a lot of research activity is pursued targeting

elemental materials’ recycling. Public-funded German projects such as MERCATOR or InnoRec tend

to follow innovative recycling steps in order to mobilize Li, and even in the case of MERCATOR,

the critical raw material graphite will be reused for non-battery applications [25,26]. Methods for

mobilizing Li before it is deposited in a slag or flue dust are already under fundamental investigation.

These investigations are relevant since extracting Li from a slag is energy and resource intensive,

and the current Li price does not assure economic viability for this add-on process [20]. Early-stage

recovery methods for transforming of Li phases in the battery active mass are proposed, making use

of supercritical CO2 or by thermally activation [27–30]. Innovative methods for a holistic recycling

based on graphite pursue the flotation technology [31,32]. Another important research topic is the

recovery of the electrolyte, which is challenging due to its high reactivity [33] and the ecotoxicity of

prevailing F-compounds [34]. Phosphorous (P), present in almost all LIBs, is another critical topic

in recycling. P needs to be removed in pyrometallurgical nickel (Ni) production since it affects the

properties of specific Ni alloys [35]. In conclusion, there is still a strong need for research in recycling

of conventional batteries [36], especially based on recycling efficiency and added value. Moreover,

research on non-chemical recycling optimization is needed, for example in the field of collection and

scrap logistics [2].

ASBs are regarded as promising future batteries, as they have advantages like enhanced stability,

safety, and energy density over conventional LIBs [37]. This is mainly due to the solid electrolyte’s

beneficial properties such as a better thermal stability, non-flammability, resistance against overcharging,

and long cycle stability [38].

Different classes of solid-state electrolyte materials like polymers, sulfides, and oxides are under

investigation. Due to easier processing, polymer based ASBs are the closest system in terms of market

introduction. Sulfides are also easy to process and show the highest Li-ion conductivity, increasing the

power density greatly, but their difficult synthesis and chemical instability towards water/air impede

the large-scale fabrication. Considering safety aspects, oxide-ceramic materials stand above all other Li

electrolytes due to their chemical, thermal, and oxidation stability. They are non-flammable, non-toxic,

and can be handled in air. The chemical stability of garnet-based Li7La3Zr2O12 electrolytes towards Li

allows the direct use of metallic Li, making this material one of the most promising electrolytes for

ceramic all solid-state batteries [39]. However, expensive dopant elements like lanthanum (La) and

tantalum (Ta) as well as the required high temperature processing steps are the biggest hurdles for

large scale market introduction. Additionally, a first analysis of the resource availability have shown

that with a market share of 10% in traction and stationary applications, Li, La and zirconium (Zr) can

be classified as critical [40]. However, there is no general consensus on the assessment of resource

availability and criticality of raw materials. Different studies evaluate the criticality of materials

(especially Li) in different ways and with different results [41–49]. For example, Helbig et al. published

a study to assess the supply risks associated with 10 elements used in different LIBs [45]. Li and Co

have the highest supply risk scores. The high score for Li mainly emerges from a lack of end-of-life

recycling and the high future technology demand. The high supply risk score of Co, in contrast,

results from the by-product dependence and the high risk from political instability. Aluminium

(Al) shows the lowest supply risk score followed by titanium (Ti), copper (Cu), iron, Ni, graphite,



Metals 2020, 10, 1523 4 of 19

manganese (Mn), and P. Schultz and Kuckshinrichs [50] analyzed the need for Li for electrochemical

energy storages. By analyzing data from known Li sources, the authors conclude that there is no

major risk in terms of exhausting world reserves, especially if a market for Li recycling is introduced.

However, with possible strongly rising demand in mind, the authors see serious potential for risks

on the supply side, which may result in temporary shortage situations and rising price levels at the

Li world market. The European Commission [48] identified 26 raw materials and material groups

as critical. This includes Co, La, phosphate rock, and Ta, which are used for ASBs. Li, Mn, Ni, Ti, Al,

and Cu are considered non-critical according to the EU critical material list with Li and Mn being close

to the threshold.

Moreover, a consideration of possible recycling processes was not part of the study by

Troy et al. [40]. Generally, no recycling concepts for ceramic ASBs are in place yet. In an indirect way,

Piana et al. investigated the reusability of industrial waste products for the synthesis of a sodium

(Na)-on ASB electrolyte [51], and Wang et al. extracted end-of-life LiMn2O4 cathodes for resynthesizing

a Li-Ion ASB electrolyte [52]. This shows that only rudimentary knowledge regarding a circular

economy of ASBs exist. Therefore, this study aims to generate the first ceramic ASB recycling concept.

In particular, a theoretical approach is chosen, taking the presented LIB treatment methods as a starting

point, then evaluating to what extent specific tools can be translated to ASB recycling.

2. Materials and Methods

2.1. Cell Concept

In terms of industrial and technological value, the cell concept with the lowest cost and highest

energy density for oxide-ceramic based ASBs is a flat cell, which is housed in a pouch bag. The

design of the cell itself (see Figure 1) is rather simple and consists of five different layers: (1) Anode,

(2) Separator, (3) Cathode, (4), and (5) Current Collectors.

 

 

Figure 1. Pouch cell design of a ceramic ASB: A thick mixed cathode is separated by a thin LLZ-layer

from the Li-metal anode. The currents are collected by a thin Cu or Al foil.

(1) Anode: The electrochemical stability of some oxide-ceramic electrolytes towards metallic Li

allows for the direct use of Li metal as an anode material. Li metal shows a very high theoretical capacity

and the lowest electrochemical potential, making it the most promising anode material in Li based

batteries in terms of energy density. Theoretically, all active Li ions are located in the cathode material.

Nevertheless, a thin layer of metallic Li on the anode side is necessary to compensate for irreversible Li

losses and a homogeneous Li plating during cycling. Thus, we used a thin layer of 5 µm thickness in

our cell design, knowing that Li free anode concepts are also heavily researched at the moment.

(2) The separator prevents electrical short circuiting due to the direct contact between anode and

cathode material, while it allows Li-ions to pass between the two electrodes. In ASBs, the separator

can be made from the solid electrolyte itself, therefore having the same high ionic conductivity while
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the electronic conductivity is low. However, it needs to be chemically stable towards the anode

material (Li metal) on the one hand and towards the cathode material (e.g., LCO, NMC) on the

other hand. So far, the only materials that combines all these properties are garnet-based compounds

like Li7La3Zr2O12 (LLZ). Ta substitution (Li6.4La3Zr1.6Ta0.4O12) stabilizes a cubic garnet structure and

enhances the conductivity of the material up to 1 ms/cm [53]. Since the separator is an inactive part of

the battery, it should be as thin as possible while still showing sufficient electronic and mechanical

properties. A dense layer of 10 µm LLZ is used as a compromise between total resistance, sufficient

mechanical properties, and realistic processing. In the future, thinner separators and interlayer to

improve the contact resistance are of course realistic.

(3) Cathode: In a conventional LIB, the cathode consists of a rather porous structure of active material,

conductive additives, and polymer binders in which the liquid electrolyte can be infiltrated and achieves

a good interface contact. As cathode active materials (CAM) for ASBs, the same materials which are

already used in LIB can be incorporated. To achieve a good surface contact between the two solid phases,

the cathode material needs to be co-sintered together with the electrolyte. One promising material

combination for oxide-based ASBs is the combination of LiCoO2 (LCO) and LLZ. The mixture of these

materials is chemically stable up to 1085 ◦C [54], which allows a co-sintering of the cathode. Batteries

of this material mixture are already realized on lab scale [1,12,39,55]. However, to obtain high-energy

density cells, the amount of CAM in the mixed electrode should be as high as possible. In our concept,

we consider a CAM: solid electrolyte ratio of 2:1 as reasonable, allowing for percolation of both phases.

The thickness of the cathode is set to 150 µm to achieve areal capacities of approx. 4 mAh/cm2, which

is a common value for conventional LIBs. By substituting Co in LCO by Ni and Mn the capacity of

the cathode material can be increased. Therefore, we also consider the use of LiNi0.8Mn0.1Co0.1O2

(NMC811) in an ASB although this material shows a lower chemical stability at elevated temperatures

towards LLZ then LCO [56]. However, stabilizing coatings or lowering the sintering temperatures by

advanced processing technologies could allow for usage of NMC811 as cathode material for LLZ bases

ASBs in the future. To further increase energy density, another highly conductive ceramic electrolyte

should be considered: NASICON structure based Li1.5Al0.5Ti1.5(PO4)4 (LATP). It shows a comparable

or even higher total Li-ion conductivity (~1 ms/cm) than LLZ, while the density is lower and the raw

materials needed for synthesis are less critical and cheaper [57]. However, the major drawback is its

lower chemical stability, especially towards metallic Li. Without any stabilizing coating, it can therefore

not be used as a separator material. To combine both advantages of the individual materials, we also

investigate a cell concept with LLZ as separator and LATP instead of LLZ in the mixed cathode [58].

(4) Current collector anode side: the current collector on the anode side needs to fulfill only two

requirements: high electronic conductivity and chemical stability towards metallic Li. One material

that fulfills these requirements is Cu. Since the ceramic cathode and separator material construct a

mechanically stable backbone, a rather thin layer of Cu (10 µm) is sufficient.

(5) Current collector cathode side: Since the cathode side is chemical less active then the anode side,

the requirements for the current collector on the cathode side are reduced to only high electronic

conductivity. To keep the cell as light as possible, we use a thin Al foil (10 µm) on this side.

Due to the mechanical stability of the cell stemming from the ceramic cell itself, the thicknesses

of the Cu and Al current collectors could be decreased further (even only the metallic Li could be

used as current collector on the anode side). However, since this will depend mainly on the specific

production process and design of the cell stacks (e.g., bi-polar vs. parallel), all possible variations

cannot be investigated within this paper.

In total, we consider four different cell designs of promising as future ceramic ASBs, all containing

a LLZ separator, Cu and Al current collectors, but different cathode composite materials. The energy

density of these four cell designs were calculated and are listed in Table 1.

The LATP-based cells (2.1 and 2.2) generally show higher energy densities, stemming from its

lower density compared to LLZ. NMC811 with its higher capacity than LCO results in the highest total

energy densities.
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Table 1. Capacities of the four different cell designs.

Cell Number Cathode Materials Energy Density (Wh/kg)

1.1 LLZ + LCO 309
1.2 LLZ + NMC 406
2.1 LATP + LCO 352
2.2 LATP + NMC 463

2.2. Assembling Process

One crucial step during the assembling of a working cell is to ensure a good interface conductivity

between the separator and the cathode material. This can be achieved by a co-sintering process,

where the cathode and the separator will be baked together at elevated temperatures. The current

collectors, on the other hand, will be attached rather loose on the electrodes and mainly kept in place

by the packaging of the cell. The cell housing itself will most likely be adapted from LIBs in pouch

cell format, since it has the lowest impact on the energy density and enables the use of the same foil,

tabs, and ultrasonic welding to obtain cell stacks and batteries. After the sintering process, cathode and

separator will be chemically bonded, making a mechanical separation impossible. However, due to the

brittle nature of ceramics, crack formation is still a major concern. The Li anode will be either pressed

on the separator as a foil or, more likely, will be evaporated on the separator material. Cycling and the

ductility of Li metal will make it hard to mechanically separate the anode from the rest of the cell.

2.3. Material Demand

The market for batteries will increase drastically within the next years. With politics pushing

worldwide towards an electrification of the automobile sector, the demand for batteries will multiply

within the next years, from 500 GWh in 2017 to several TWh in 2050 [59]. Considering our four

cell concepts, we calculated the amount of raw material that would be necessary to produce 1 TWh of

oxide-based ASB.

To discuss possible bottlenecks in supply of the elements for the assumed 1 TWh ASB application,

we present the material requirements in comparison to the current world production as a first rough

estimate (Table 2).

The material compositions (weight percent) of all four ASB cells are shown in Figure 2.

Around one-third of the cell consists of transition metals from the cathode side containing Co,

Ni, and Mn. The electrolyte metals in the LLZ cells (1.1 and 1.2) make around one quarter of the

complete cell, with the main part being the rare earth element La. 10 wt.% is Cu, while Li makes up

around 6 wt.%. The total demand of the materials that are necessary for a battery production of 1 TWh

is listed in Table 2. The right side of the table shows the share (%) on current world production for

1 TWh. All four cell types require a critical demand of Li, La, and Ta. In addition, the Co and zirconia

demand can be seen as critical for cell 1.1, 1.2, and 2.1. The criticality can be defused when using

Co pure cathode material NMC as it is in cell 1.2 and 2.2, since Ni and Mn can be seen less critical.

Looking at the LLZ-based batteries, the demand of La, Zr and especially Ta are in a range that goes

far beyond the current world production. Including LATP into the mixed cathode (Cell 2.1 and 2.2)

lowers the criticality for La, Zr, and Ta, but being still in a critical range for Ta and La. This shows that

a good recyclability of the battery cells is inevitable, if this type of batteries should take a reasonable

market share. However, any future developments in the raw material production market are not taken

into account yet and can change the results noticeably. It is very likely that as demand increases, new

mines will start production and others will maximize their output [40].

The following table shows battery components and their annual production, and relates those

numbers to the material demand when producing the cells presented in this study (see Figure 2 and

Table 2).
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Figure 2. Material compositions of the four different cell designs.

Table 2. Material demand required for 1 TWh ASB and share of demand on current world production.

World Production (T) Material Demand for 1 TWh ASB in 105 T
Share (%) on Current World Production

in 2030

Cell 1.1 Cell 1.2 Cell 2.1 Cell 2.2 Cell 1.1 Cell 1.2 Cell 2.1 Cell 2.2

LI 77,000 [60] 1.93 1.47 1.57 1.19 251 191 204 155
NI 2,700,000 [60] − 6.35 − 6.35 − 24 − 24
CO 140,000 [60] 10.56 0.80 10.56 0.80 755 57 754 57

MN
15,414,509 [61]

53,000,000 a [62]
− 0.74 − 0.74 − 0.5 − 0.5

AL 64,000,000 [60] 0.93 0.72 1.11 0.86 0.1 0.1 0.2 0.1
TI 4,394,500 [62] − − 0.95 0.73 − − 2.2 1.7
P 36,650,402 [61] − − 1.23 0.95 − − 0.34 0.26

LA 56,700 b [60] 5.11 3.95 0.85 0.66 901 697 150 116
ZR 112,471 c [62] 1.79 1.39 0.30 0.23 159 123 27 20
TA 1800 [60] 0.89 0.69 0.15 0.11 4928 3816 833 611
CU 20,000,000 [60] 3.07 2.38 3.07 2.38 1.5 1.2 1.5 1.2

a Mn ore; b La production accounts for 27% of the total world rare earth production of 210,000 T [63]; c based on
1,256,000 T ZrSiO4, (zircon), assumption: 18% of the total zircon amount is used for zirconia production (ZrO2).

3. Recycling Approach

A battery recycling process should be tailored to the battery components used and relevant

elements targeted for recovery. As indicated before, many different ASB systems are promoted

currently in laboratories all over the world. Moreover, within the three superordinate systems
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(polymers, sulfides, and oxides), various components are being tested during the cell design phase

aiming at a high-performance solid-state battery. Therefore, exemplarily battery compositions have to

be selected for generating first ASBs recycling considerations. In this study, recycling approaches for

the two systems LLZ + NMC and LATP + NMC are designed to match the different available systems.

These approaches are then compared in terms of their sustainability.

Due to the different nature of both composition and physical form of ASBs, the recycling

concepts also differ quite a lot from those for conventional LIBs: Most integral components

of the cell are chemically rather ignoble, and besides, do not show a high vapor pressure.

ASBs do not contain combustible components, and thus, do not contribute to exothermic reactions.

Hence, pyrometallurgy-based recycling steps are not the tool of choice for establishing a suitable

recycling process, such avoiding the generation of only a large volume of slags. Moreover, the ASB

composition according to Figure 2 shows that the battery system contains even more elements in

comparison to conventional LIBs, leading to a more complex recycling chain. Regarding ecotoxicity,

ASBs have beneficial properties for performing a recycling process. They do not contain fluorine or

phosphorous compounds, which is why the amount of hazardous gas phases will be reduced when

applying a thermal treatment. According to the state-of-the-art of LIBs recycling (see Introduction),

the occurrence of hazardous off-gases is one main drawback of thermal pre-treatments. Recycling is

generally eased due to the absence of organic compounds, like binders. They are removed by sintering

in the battery production.

In order to select a suitable recycling process, Figure 3 sums up the Introduction chapter. Here,

the reference level comprises of charged battery cells, assuming that they have already been extracted

from their modules in case of EV-battery packs. Even though a discharge of whole modules is possible,

for reasons of clarity, this option is neglected in this case.

 

 

Figure 3. Options for selecting a recycling method based on the available recycling paths according to

the state-of-the-art.
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As described above, Line 5 (red path, pyrometallurgy) is not seen as optimal treatment. Besides,

since ASBs are beneficial for safety and risk for fire incidents, the selection of pre-treatments is more

flexible in terms of direct inert or aqueous shredding (Lines 1 and 2). The pre-treatment or LIBs

generally requires a discharge step to protect the comminuting unit operations from fire incidents,

a thermal treatment with discharging (Line 3), or a direct thermal treatment without discharging

(Lines 4 and 5). In Line 4, a thermal treatment can by bypassed due to a robust system being able

to handle thermal runaways and moreover comprising a waste heat recovery system. In Line 5, a

thermal treatment can by bypassed due to the high temperature requirements in smelters, where

thermal runaways do not represent a processing challenge. For ASBs, either Line 1 or 2 is preferred

since the solid-state battery components are sintered and thus are expected to be mechanically and

chemically stable. Inert shredding in H2O can be beneficial for the ASBs treated in this study, since

their anodes do not consist of metallic lithium, which is highly reactive and thus could go up in

flames. Hence, high costs for vacuum and inert gas shredding could be avoided by aqueous shredding.

Since no binders are applied, a thermal treatment is not necessarily required for ASBs. It has been,

however, reported in the literature that an eased component liberation is reached when applying a

thermal treatment. Thus, whether Line 1 or 2 is beneficial is to be examined in Part II of this study.

Whether the sintered battery components can be separated from one another can only be figured

out by conducting practical experiments. Because of the comparatively high Li contents (~3 wt.% Li

in LIBs [64]) in comparison to 6 wt.% Li in the ASBs (see Figure 2), a treatment for an Early-Stage

Li-Recovery (ESLR) would be more viable, and thus, seems a good option for the selected concept.

Finally, extractive hydrometallurgy is highly selective and can separate battery components like Mn,

La, and Zr element-wise, which is why Line 7 (violet) or Line 8 (pink) are chosen for a subsequent

process route. Whether ESLR is a suitable tool for ASBs is to be investigated experimentally in Part II

of this study.

According to this discussion and based on know-how regarding hydrometallurgical extraction

processes for recycling LIBs, as can be seen in [8,18,65], the resulting flow chart for LLZ + NMC

batteries can be seen in Figure 4.

 

 

Line 2 (blue)

Subsequent Process Routes:
Line 7 (violet)
Line 8 (pink)

LLZ +NMC cell

Inert Crushing (+ Sieving)

Black Mass

Thermal Treatment

Extractive Hydromet.

Early-Stage Li-Recovery

(Sieving and Sorting) Housing/ foils

Off-gas, soot, oil 

Li2CO3

Electrolyte 
components

C, Al, 
Cu, Mn, 
Ni, Co, 
Zr, La, 
Ta 

Figure 4. Experimental plan for a suitable LLZ +NMC recycling. C represents both graphite, active

charcoal, and soot.

It has to be further examined whether a shredding process together with a component separation

by means of sieving will lead to satisfying results. Eventually, a further comminution step by a ball

mill is required to grind the oxidic fractions and liberate them from the substrate foils and casing.
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Moreover, research will be necessary considering the necessity of a thermal treatment. The ESLR,

represented by a thermal or CO2-driven phase transformation of Li compounds into water soluble

Li-carbonate, and the subsequent dissolution of Li phases in H2O as a neutral leach is one option. Here,

Li, which will be dissolved, can be separated from the residual active mass, which is mainly insoluble in

water. The CO2-driven option for the ESLR consists of a phase transformation by means of supercritical

CO2 in an autoclave reactor filled with water or by gaseous CO2 in an aqueous medium. When using

an autoclave reactor, an excess pressure of 73.8 bar [66] is needed to reach the supercritical state.

The above-mentioned garnet structure (LLZ) is a mineral compound, whose dissolution conditions

are not experimentally proven yet. According to own studies, elevated temperatures and strong

acids/bases are required to dissolve sintered LLZ. On this account, two scenarios are to be discussed

within this study. They discuss the two border cases, in which either the whole LLZ structure

is chemically dissolved (scenario 1) or only Li is dissolved from the structure, whereas the main

garnet structure remains insoluble (scenario 2). In these scenarios, the underlying solvent is not

further specified. However, it can be predicted that the solvent in scenario 1 will tend to be stronger than

the used solvent in scenario 2, since the Li+/H+ exchange reaction is well investigated for LLT [67–69].

Both scenarios are presented in Table 3.

Table 3. Two hydrometallurgical recycling scenarios discussed within this study.

Criteria of Scenario Scenario 1 Scenario 2

Characteristics LLZ is fully dissolved
Only Li is dissolved, the other LLZ
components remain solid

Leaching conditions
High temperature/aggressive
leaching

Moderate leaching

The extractive hydrometallurgy according to Wang [18,65] can be modified adding specific

precipitation steps for La, Zr, and Ta. Depending on the scenario, the multistep hydrometallurgy is

to be designed differently. In scenario 1, the elements Zr, Ta, and La are integrated in the leaching

and precipitation sequences according to their behavior in aqueous solutions. In scenario 2, they are

extracted as a concentrate. Here, no dissolution is taking place and cross-contaminations by similar

precipitation areas, e.g., Co, is neglected. The following elaboration treats the behavior of Zr, Ta, and La

in aqueous systems. For this purpose, both StabCal simulations and literature-based properties are

considered. The StabCal simulations show the precipitation behavior in the case of ionic dissolution of

Zr, Ta, and La. This means that no information on the degree of dissolution is given. Moreover, the

oxidation states of the input material cannot be specified by the StabCal simulations since the level of

consideration is the ionic dissolution. The concentration applied refers to the chemical composition

given, and the StabCal database used is indicated in the image captions. However, it has to be

noted that no specification on leaching medium, pH-additive and further components in the system

can be detailed. When realizing the presented simulations experimentally, the parameters leaching

medium, pH-additive, and further components have an influence on the precipitate phase and thus

on the pH-value of precipitation. Experimental validation by titration is a suitable tool to validate

the calculations. Titration is therefore going to be performed in the frame of this publication’s Part II.

The literature-based information gives an insight on the degree of dissolution, and besides, on the

precipitation behavior. Thus, it is complementary to the simulation data. However, the data presented

are also specific studies and might not be transferrable to any system. The data derived from literature

provide a first orientation to forecast the hydrometallurgical behavior and thus construct a suitable

recycling path. Experimental validation within Part II is going to evaluate the approaches presented in

this study.

Figure 5 shows a thermochemical modelling by StabCal in terms of the behavior of the element Zr

when being brought into aqueous solution. It can be seen that the Zr-ions are starting to precipitate

from the leaching liquor at a pH-value of ~4.5 as ZrO2.
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Figure 5. EpH diagram of Zr dependent of pH calculated by StabCal. Database used: Helgeson

(SupCrt).

In the literature, this phenomenon has been discussed, as well: Ma et al. built a phase diagram

and calculated a precipitation of ZrO2 from the leaching liquor at a pH-value of ~2.5 (see Figure 6) [70].

The results show slight deviations but general accordance with the StabCal simulation in Figure 5,

especially taking into account the high degree of simplification discussed above. Moreover, Ma et al.

treated an eudialyte concentrate in H2SO4, and adjusted the pH-value by sodium carbonate (Na2CO3).

Thus, deviations by further components in the system are likely to occur.
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Figure 6. Influence of pH-value in terms of precipitation of Zr stemming from eudialyte from a H2SO4

solution, based on [70].

In general, ZrO2 can be leached in an acidic medium, as reported by Ferreira et al. in case of

nitric acid (HNO3). They have shown a Zr dissolution of 95% with a leaching time of 4 h, an operating

temperature of 70 ◦C, and a molality of 12.0 mol/L [71].

Figure 7 shows a thermochemical modelling by StabCal in terms of the behavior of the element

La when being brought into aqueous solution. From this calculation, a precipitation of La-ions in a

pH-area of ~7.4 is predicted.
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Literature on the dissolution of La-phases has shown a good accordance with the StabCal

simulation presented. Orhanovic et al. reported a precipitation pH-value of 7.36–7.56 for La(OH)3 [72].

Um et al. examined the dissolution of La2O3 in H2SO4, leading to a full leachability, see Figure 8 [73].
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Figure 8. La2O3 dissolution and conversion into La2(SO4) [73].

Figure 9 shows thermochemical modelling by StabCal in terms of the behavior of the element Ta

when being brought into the aqueous solution. From the simulation, no pH-dependent precipitation

threshold can be identified.

However, a literature research gives more information on the dissolution and precipitation of

Ta-compounds dependent on the pH-value. Chen et al. report a low Ta leaching efficiencies in HCl,

H2SO4 and HNO3 [74]. When applying hydrogen fluoride (HF) based pressure leaching, at 23 bar,

180 ◦C for 3 h, a leaching efficiency of 99% could be obtained [74]. Regarding Ta-recovery from the

solution by solvent extraction, an extraction efficiency of 99.5% could be reached at pH= 1 (see Figure 10).

Nevertheless, solvent extraction can extract ions selectively dependent on the solvent applied, and thus,

the system behaviour cannot be transferred linearly to acidification/basification-driven precipitation
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(conventional hydrometallurgy by pH-adjustment). Hence, the extraction efficiency describes the

dissolution within the solvent; research on basification-driven precipitation will be presented below.
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Figure 9. EpH diagram of Ta dependent of pH calculated by StabCal. Database used: HSC (Outotch).
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Figure 10. Influence of pH-value 1–5 on the extraction efficiency of Ta using Alamine 336 for solvent

extraction, based on [74].

Clark and Brown confirm the dissolution behaviour detected by Chen et al. stating the capability of

Ta to dissolve in alkaline solutions [75]. This is also supported by Deblonde et al. [76,77]. Here, alkaline

leaching in sodium hydroxide (NaOH) or potassium hydroxide (KOH) shows a good hydrometallurgical

alternative to fluorine-based leaching, which is critical in terms of toxic emissions [77]. Deblonde et al.

report on a combination process consisting of alkaline leaching and pH-value adjustment to pH = 2–7 in

order to precipitate Ta [77]. Thus, it can be concluded that Ta is likely to precipitate in an acidic area and

might cause contaminations in the Cu-cementation step or the Al-Fe-hydroxide precipitation according

to Wang [18]. The same option is valid for La and Zr, which tend to precipitate in acidic areas, too,

as described above. When assuming a highly selective hydrometallurgical treatment, a precipitation

into element-specific product will be realizable though.

The simulated properties were, hence, combined with a literature research in order to extract

a recycling process in terms of multi-step hydrometallurgy. The process design of a multi-step
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hydrometallurgy can be applied to the two scenarios shown in Table 3. In combination with the

behavior of the elements in the active mass, Zr, La, and Ta, and the conventional NMC-chemistry,

one flow-chart for scenario 1 and one flow-chart for scenario 2 regarding a multi-step hydrometallurgy

are presented in Figures 11 and 12. Since the oxidation states of the input material cannot be forecasted,

neither the phase of the precipitates is specified in this elaboration.

Scenario 1

As already suggested in Table 3, scenario 1 represents the case of bringing all battery components

into solution. Since LLZ implies garnets, an aggressive leaching medium has to be chosen here. Then,

the specific elements can be precipitated according to an increased pH-value e.g., as hydroxides,

sulfates, or oxides. Since the precipitation of metals can be estimated according to the elaborations

from Figure 5 to Figure 10, the following multi-step hydrometallurgy is suggested for scenario 1.

 

io 1. 



Black mass

Leaching 1
Solution: Li, Co, Ni, Mn, Al, Cu, La, Zr, Ta

Strong acid 
+ H2O

Cu-cementation + filtration 2Base + H2O 
+ Fe

Cu

Al-Fe-precipitation + filtration 4Base + H2O Al, Fe

Co-Ni-Mn precipitation + filtration 6 Co-Ni-Mn

Li-precipitation + filtration 7

Base + H2O

Base + H2O 
+ Na2CO3

Li

Base + H2O ZrZr-precipitation + filtration 3

La-precipitation + filtration 5Base + H2O La

Ta-precipitation + filtration 1Base + H2O Ta

Figure 11. Developed recycling path for multi-step hydrometallurgy (Scenario 1: Full dissolution of

garnet structure→ aggressive leaching).

Scenario 2

In the case of moderate leaching, the garnet structure is not dissolved. However, depending on the

acid chosen, the presented system behavior of scenario 2 can also occur although an aggressive leaching

medium is chosen. In contrast, a milling step, as indicated in Figure 4 by the term “Crushing”, could also

enhance Li liberation. The Li+/H+ exchange is also realizable in aqueous or moderate leaching. Hence,

a combination of milling and moderate leaching is to be experimentally evaluated in terms of leaching

behaviour according to scenario 1. As described above, Ta would not be brought into solution, even if

choosing a strong acid, except of HF. If La is not diluted, which can be the case for an unsuitable

leaching medium as well, it will be filtered along with Ta. Subsequently, alkaline leaching could

dissolve Ta and thus, enable a separation between La and Ta. Hence, all the garnet oxides can be

selectively separated also by scenario 2.

Thus, the focal point of the experimental investigations will be a determination of suitable

pre-treatments, both mechanically and thermally. Furthermore, the extractive hydrometallurgy aiming

for a zero-waste and maximum yield, especially based on Co and Ni, is to be developed.
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Figure 12. Developed recycling path for multi-step hydrometallurgy (Scenario 2: No dissolution of

garnet structure→moderate leaching).

4. Conclusions

A technology’s recyclability at its prototype development stage is a progressive and, according to

the authors opinion, crucial approach for contributing to a both high-tech and highly sustainable world.

Investigating a technology’s recyclability at this stage generates an understanding of its future

viability and, moreover, drawing up recommendations in terms of a “design for recycling”. In this way,

performance and sustainability are brought together, leading to the best technology concept in both

economic and ecological value.

This study is the first attempt in approaching suitable recycling paths for oxide-based ASBs.

Different options have been pointed out, focusing either on conventional LIB treatment steps or on

innovative methods for a specifically tailored process.

According to our evaluation, the most promising pre-process is shown in Figure 4, and in

combination with a detailed multi-step hydrometallurgy steps in Figure 12 leads to an optimal

recycling yield. The dissolution of the garnet structure could require strong acids, which can lead to

undesired environmental impacts and thus, should be avoided. Moreover, less cross-contaminations

with conventional NMC-components and thus a higher recycling efficiency can be expected. If a thermal

treatment is required, it should be tested experimentally, and if an ESLR is implied (see Figure 4), the

final step regarding the Li carbonate recovery in Figure 12 can be foregone. However, in contrast

to environmental and recycling efficiency considerations, the economic perspective is not taken into

account here.

5. Outlook

Future research will focus on experimental implementation of the theoretical concepts drawn

up within this study. Thus, mass balances and chemical analysis will examine the validity of the

theoretical concept and thereby contribute to sustainability assessments of next-generation batteries.

This research will be shown in “Recycling Concept for Ceramic All-Solid-State Batteries—Part II:

Experimental validation for a LLZ + NMC-based System”.
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