Synthesis of hierarchically structured (Y₂O₃:Eu)@ Ag nanocomposites by ultrasonic spray pyrolysis with plasmon enhanced luminescence

G. Alkan¹, L.Mancic², R. Rudolf³, B. Friedrich¹, O. Milosevic²,

¹IME Process Metallurgy and Metal Recycling - RWTH Aachen University,Intzestraße 3 - 52056 Aachen

² Institute of Technical Sciences of SASA, Belgrade, Serbia, K.Mihajlova 35/IV

³ Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia

OBJECTIVE OF THE STUDY

- ➤ Understand the formation mechanisms of the hierarchical europium doped yttrium oxide core / silver shell nanostructures and contribute to the luminescence mechanism and metal/inorganic interface properties.
- Surface plasmon resonance enhancement of luminescence efficiency intensity by optimized Ag incorporation

EXPERIMENTAL METHODS

Synthesis

Heat Treatment Various heat treatment

conditions

No heat treatment
(a.p.)

2 hours12 hours

Particle Formation Mechanism

Ultrasonic Spray Pyrolysis

V(NO₃)₃ · 6H₂O Eu(NO₃)₃ · 5H₂O AgNO₃ 1 % 2.5 % 5 % 7.5 % 10%

Characterization

- > XRD (crystal structure, lattice parameters)
- > **SEM/TEM:** morphology, microstructure
- > PL: PL efficiency

Ag effect on microstructure

1, 2.5 and 5 wt. & Ag concentrations ehibited target morphology; dense spherical shape and homogenous size distribution

➤ More than 5 % Ag results in agglomeration which is detrimental to surface plasmon enhancement

(STEM; homogenous Y, Eu distribution)

Ag agglomerates at high concentrations

1300 Ag

1300 Ag

1300 Ag

1300 Ag

100 nm

100 wt. %

Ag and heat treatment effect on crystal structure

	1 % Ag (a.p.)	1 % Ag (2h)	1 % Ag (12 h)	2.5 % Ag (a.p.)	2.5 % Ag (2 h)	2.5 % Ag (12 h.)	5 % Ag (a.p.)	5 % Ag (2 h)**	5 % Ag (12 h)
Crystal structure	Cubic, la-3	Cubic, Ia- 3	Cubic, la-3	Cubic, la-3	Cubic, Ia-3	Cubic, la-3	Cubic, Ia-3	Cubic, Ia-3	Cubic, Ia-3
Unit cell parameter a (Å)	10.6292 (5)	10.6199 (2)	10.6193 (2)	10.6257 (6)	10.6199 (2)	10.6209 (2)	10.6248 (5)	10.6195 (2)	10.6193 (1)
Crystallite size (nm)	15.9 (2)	42.2(7)	45.6(7)	15.6(2)	42.1(9)	39.0(5)	16.5(3)	42.1(6)	44.5(6)
OccY1 (C2)*	0.933	0.936	0.942	0.947	0.933	0.939	0.969	0.945	0.945
OccY2 (S6)*	0.981	0.972	0.954	0.939	0.981	0.963	0.873	0.945	0.945
Phase content	100%	100%	100%	100%	100%	Minor phase Ag	Minor phase AgCl	Minor phase Ag	Minor phase Ag

Y_{0.9}Eu_{0.1}O₃@Ag
5wt%Ag 2hTT 1000 obs
ref
diff

10 20 30 40 50 60 70 80
Two theta, °

** Rietweld refinement of 2.5 wt % 2 h sample

Ag and heat treatment effect on photoluminescence

- ➤ Among a.p. samples, PL emission intensity increase with decreasing content of Ag
- > All heat treated samples exhibited better PL than as prepared samples
- > Time of the treatment (2 or 12 hours) did not cause a dramatic change.
- For heat treated samples, higher Ag concentrations; better PL implying Ag diffuse to more favorable positions

- Colour point of all heat treated samples are same
- ➤ No red emission in as prepared samples except 1 wt. % Ag

CIA Diagram: Location of all samples revealing emitted color

2.5 % (12 h) 5 % (12 h) 2.5 % (2 h) 5 % (2 h) 1 % (12 h) 1 % (2 h) 1 % (a.p.) 2.5 % (a.p.) 5 % (a.p.) Wavelength (nm)

Comparison of the main red-emitting peak (612 nm; $d_0^5 \rightarrow f_2^7$) according to normalized intensities with respect to peak located at 582 nm

CONCLUSION

- > Heat treatment increases PL efficiency
- > Ag addition followed by heat treatment results in high PL efficiency.
- > As prepared samples with higher silver addition exhibits poor PL

SION

- > HRTEM analyses will be used to provide a better
 - ➤ Eu concentration will be examined for higher luminescence efficiency

FUTURE WORK

explanation

