Characterisation of Pyrolysis Products and their Influence in Aluminium Scrap Recycling

Motivation:

- Determination of the influence of pyroylsis- and combustion gases on dross formation using organic coating aluminium scrap
- Development of a mechanism model for the de-coating process focusing on gaseous reaction products according to the gas evolution
- Assessment of the gas liquid interactions

Typical varnish component: Bisphenol-A-diglycidylether (epoxy resin)

O O H₃C CH₃

UBC bale with a organic amount of 2-3%

Composition of Used Beverage Cans (UBC):

- Can lid: 5182 alloy, can body: 3104 alloy
- Organic layer based on epoxy resin
- Organic coating thickness in the range of 8-12 μm

Thermal treatment (Pyrolysis, Thermolysis)

- Trials in a lab-scale pyrolysis reactor
- Thermal treatment of small UBC pieces (4x3x3 [cm])
- Parameters of influence (time, temperature, heating rate, oxygen)
- Characterization of the pyrolysed products: evolved gas and solid carbon residue

gas supply Ar/Ar+x% O₂ offgas

Ar, T= 350°C

Ar, T= 450°C

Ar, T= 550°C

Ar, T= 650°C

<u>Interaction pyrolysis gases - aluminum melt</u>

Injection of synthetic gas mixture (carrier gas: Ar) in Al melt

 Composition of gas mixture is defined by previous characterisation of pyrolysed gas

chemical composition of the evolved gas during a pyrolysis test with max. temp. of 550°C

Outlook:

- Experimental validation in technical scale by treating industrial UBC bale (inert and enriched oxygen atmosphere)
- Determination of oxidative effect of gaseous pyrolysis products on dross formation

