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Abstract: In situ measurements of the chemical identity and quantity of anode gases during
electrochemical measurements and rare earth (RE) electrolysis from fluoride-based molten
salts composed of different kinds of rare earth oxides (REOs) were performed using FTIR
spectrometry. Linear sweep voltammetry (LSV) was carried out to characterize oxidation
processes and determine the anodic effect from NdFs + PrF3 + LiF + REO melt. RE complex
formation and subsequent reactions on the GC anode surface were discussed to understand
the formation pathways of CO/CO; and perfluorocarbon gases (PFC), mainly CF; and
CyFg. The LSV shows that increasing the REO content from 1 wt.% up to 4 wt.% in the
system, leads to a positive shift in the critical potential for a full anode effect, recorded
around 4.50 V vs. W with 4 wt.% REO. The FTIR results from on-line off-gas analysis
during LSV measurements indicate that the anode gas products were composed mainly of
CO and CO,, whereas CF, can be detected before the full anode effect and C,Fg at and after
this phenomenon. Compositions of off-gases from electrolysis performed using different
kinds of REOs were compared. The main off-gas component was found to be CO in RE
electrolysis with REOs as raw materials, while in electrolysis with magnet recycling derived
oxides (MRDOs), CO; content was slightly higher compared to CO. PFC emissions during
RE electrolysis were generally similar: CF4 was detected periodically, but in negligible
concentrations, while C,Fg was not detected.

Keywords: fluoride-based electrolyte; anode processes; RE electrolysis; magnet recycling
derived oxides (MRDOs); in situ FTIR analysis

1. Introduction

Rare earth elements (REEs) have become key components in diverse crucial products
in the green technology sector, central to the development of renewable energy and low-
carbon technologies [1-3]. This trend is expected to continue, mainly due to the significant
investment in clean energy initiatives [4]. Intensive and large-scale REE exploration is a
waste-generating process that creates severe environmental issues [1,5], forcing industrial-
ized countries to turn to alternative resources for rare earths, e.g., recycling these elements
from REE-containing end-of-life (EOL) products [6-8]. As an essential direction for the
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development of clean, efficient, and simple extraction methods for the REEs from available
resources, especially from end-of-life magnets, the molten salt electrolysis (MSE) approach
is becoming the leading process. Electrochemical deposition technology uses electrode
reactions to achieve separation and extraction of a single metal from complex electrolyte
systems. The fundamental prerequisite for RE electrolysis and their alloys’ deposition
is the applicability of chloride or fluoride-based molten salt electrolytes using RE oxides
as raw materials [9]. Fluoride electrolytes provide better solubility of rare earth oxides
than chloride ones, but both electrolyte media are involved in the consumption of the
anode, producing greenhouse gases (GHGs) [10,11]. Despite numerous efforts, a compre-
hensive understanding of the environmental impacts associated with the production of
REEs remains elusive [12]. Recovered RE elements from end-of-life magnets represent a
small contribution to the overall RE supply chain today. However, as demand is rapidly
increasing, the key will be to develop an economically viable recycling process [13]. Based
on this background, our work in this field over the last decade led to the development
of a new option for the recovery of REEs from NdFeB magnet scrap using a combination
of pyrometallurgical treatment of spent NdFeB magnets and a subsequent molten salt
electrolysis process. To complete complex REE recovery processes from EOL materials,
fundamental knowledge of the mechanism of REE reduction processes and selective REE
electrodeposition in an oxide-fluoride-based molten salt is of great importance [10,14-18].
Our approach of combining experiments and theory enabled us to construct a ternary phase
diagram for the liquidus temperatures of the chosen fluoride-based molten salts, NdF; +
PrFs + LiF [15]. Then, a dynamic model of the electrochemical process was developed to
estimate the system variables and predict the anode effect using the Transfer Function (TF)
estimation, Auto-Regressive with Extra inputs (ARX), Hammerstein—-Weiner (HW), and
Artificial Neural Network (ANN) identification methods [17]. In this way, the issues re-
lated to inappropriate composition and high melting temperatures of the mixture required
for process realization were avoided. The next planned step was molten salt electrolysis
using magnet recycling derived oxides (MRDOs) as a source of rare earth oxides [6]. With
this particular approach, we succeeded in recovering REEs using MRDOs produced from
used magnet scrap in the MSE using a fluoride-based molten salt electrolyte. However,
we must emphasize the aspect of greenhouse gas emission (GHG) that could evolve on
the glassy carbon anode during REE electrodeposition from fluoride melts. It is known
that over time in RE electrolysis, the carbon anode is consumed, which uncontrollably
increases the interelectrode gap and the cell voltage, periodically interrupting the process
by replacing the anode, removing the cathode, etc. [19]. There are investigations about
off-gas emissions in rare earth technology and significant improvements are expected to
reduce PFC emissions [19-22]. To define the selective recovery of individual REEs from
fluoride-based melts by electrochemical methods, we combined an electrolyte mixing REE
+ LiF + REO to optimize the deposition process and the purity of the final product [15].
The literature review shows no data reported on off-gases evolved during electrochemical
measurements and RE electrolysis from fluoride-based melts composed of MRDO. This
study aims to determine how the concentration of REO in the fluoride melts influences
the critical potential of the full anodic effect and CO/CO; and perfluorocarbon formation
during RE electrolysis. The anode gas composition during electrochemical measurements
and RE electrolysis from fluoride molten salts with different REOs will be analyzed to
address more sustainable pathways for selective REE recovery.
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2. Materials and Methods
2.1. Apparatus

The electrochemical measurements were carried out in a graphite crucible, placed in
a gas-tight stainless-steel cell with a water-cooled lid. The cell lid was cooled to protect
the Swagelok system, which allowed the electrodes to be inserted during the experiments.
In this way, the cell operates in an airtight atmosphere that prevents the electrolyte from
oxidizing or harmful gases from leaking out of the cell. In addition to the holes for the
electrodes, the lid has holes for the thermocouple (a thermocouple Type B), the argon flow
(1.5 L/min), and the gas measurements. A crucible with the electrolyte was inserted into a
stainless-steel container before the lid was put on and the experimental reactor was sealed
(see Figure 1). Finally, the cell was placed in a resistance heating furnace and heated to
1323 K. The gases were extracted from the cell at a rate of 1.5 L/min using the exhaust gas
analysis system. The off-gas analysis was performed every 5 s. During the electrochemical
measurements and MSE, the off-gassed composition was in situ-monitored by FTIR.

Off-gas pipeline

CE
E

WE
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-

FTIR (analyzer)
n
(o e | Lo
Potentiostat FTIR Suction pump

Figure 1. Schematic presentation of the experimental setup.

2.2. Electrolyte Preparation

Lithium fluoride (LiF, 99.5% purity), neodymium fluoride (NdFs, 99.9% purity),
neodymium oxide (Nd»O3, 99.9% purity), praseodymium fluoride (PrFs, 99.9% purity), and
praseodymium oxide (PrgOq1, 99.9% purity) were purchased from Treibacher, Althofen,
Austria. The fluoride-based electrolyte was homogenized according to the electrolyte
preparation procedure, which has already been reported in detail [14]. Seven hundred and
fifty grams of the fluoride-based melt mixture was placed in a graphite crucible and the
experiment was set up according to the method described above. Powdered Nd,O3 and
PrsO1; as a source of the corresponding RE ions were added directly to the melt, while
MRDOs were prepared from EOL magnets. The fluoride-based electrolyte composition,
61.2 wt.% NdF; + 26.3 wt.% PrFs + 12.5 wt.% LiF, was selected based on our previous
tests [14], except that the main difference in the composition of the fluoride-based elec-
trolytes lies in the origin of REO materials. The MRDO was produced from end-of-life
NdFeB magnets through oxidation in air and subsequent carbothermic reduction under an
80 mbar Ar gas atmosphere [6]. With roughly 33 wt.% Nd and 10 wt.% Pr in the MRDO, it
was a good basis for using this material in REEs as a source of REO [6]. In addition, the
amount of MRDO used for the electrochemical measurements was also varied.
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2.3. Electrode and Instrumentation

A three-electrode configuration was used in the electrochemical experiments, with the
electrodes and thermocouple positioned in the molten fluoride in a custom-built stainless-
steel cell. Once the electrolyte was melted, the electrodes were immersed in the melt
and connected to an IviumStat potentiostat (5 A/10 V; Ivium Technologies, Eindhoven,
The Netherlands), which was used to run the electrochemical measurements and MSE.
For the electrochemical measurements, the working electrode (WE) was a glassy carbon
rod with a diameter of 4 mm (GC, >99.99% HTW SIGRADUR® G). Molybdenum (Mo)
wire with a 2 mm diameter (EWG 99.95%) was used as a counter electrode (CE) and the
quasi-reference electrode (RE) was tungsten wire (W, EWG 99.9%), 2 mm diameter. As
for electrolysis, the working electrode was Mo, the counter electrode was glassy carbon,
and W was used as the reference electrode. In all measurements, the electrodes (WE, CE,
and RE) were 1 cm immersed in the electrolyte. All potentials in this paper are reported
in reference to the tungsten quasi-reference electrode. The quasi-reference W electrode
used in the electrolyte containing NdF3 + PrF3 + LiF and the corresponding REO or MRDO
provided a reliable potential. Before each measurement, the electrodes were polished
thoroughly using SiC paper and then cleaned [14]. Electrolysis experiments were carried
out in constant potentiostatic mode for up to 5 h, during which constant off-gas monitoring
was maintained. Figure 1 shows a schematic presentation of the experimental setup. A
Fourier transformation infrared spectrometer (FTIR, Gasmet DX4000 Ansyco, Karlsruhe,
Germany) continuously measured evolved anodic gases in situ. A Gasmet DX4000 FTIR
analyzer was used, consisting of an FTIR unit, a gas pump, an oxygen pump, and a control
unit. Argon was used at a flow rate of 1.5 L/min, regulated by a mass flow controller, and
the FTIR spectra were recorded at a resolution of 8 cm~! with 10 scans per measurement.
Concentrations in ppm were determined using Gasmet’s Calcmet software (DX4040), which
applies the Beer-Lambert law to match measured spectra with a precalibrated reference
library. Before each experimental run, the baseline spectrum was analyzed using nitrogen
to validate the optical path, ensure instrument stability, and correct for potential drift. The
gas cell was maintained at 180 °C to prevent condensation, and periodic calibration checks
ensured measurement accuracy. Both datasets, from the gas measurement (FTIR) and the
electrochemical measurement (Iviumsoft 4.1178), were matched manually. The starting
time of each experiment corresponding to the starting points of FTIR measurements were
coordinated to create the voltammograms.

3. Results and Discussion
3.1. Off-Gas Emission During Electrolysis Using Raw RE Oxides

The electrochemical oxidation processes occurring on the GC electrode from the
NdF; + PrF; + LiF + 2 wt.% PrgOq1 + 2 wt.%Nd, O3 electrolyte were investigated by linear
sweep voltammetry. Typical LSVs recorded on a GC anode in the NdF3 + PrF3 + LiF +
2 wt.% PrgOq1 + 2 wt.% NdyOj3 electrolyte were scanned in an anodic sweep from the
equilibrium potential to different end potentials at a scan rate of 5 mV/s, as shown in
Figure 2. According to Li et al. [23], the anode effect is mainly dependent on the applied
potential and REO content in the melt. Aiming to deepen the study of anodic effect in the
fluoride-based melts with Nd and Pr oxides present, three different end potentials were
chosen. Within the scanned potential range, a relatively low scan rate was used to keep
the system under pseudo steady-state conditions, similarly to a previous investigation [16].
During the anodic scan, a small oxidation current (I) at the potential ~ 0.048 V vs. W
could be assigned to the oxidation of the impurity and the maximum peak current density
of ~84 mAcm 2 recorded indicates a low level of impurities in the cell atmosphere [22].
In the potential range from 1.50 V vs. W up to 3.25 V vs. W, a sharp increase in anodic
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current is observed, ending with an anodic wave II at a potential of around 3.00 V vs. W
and maximum current density of ~ 820 mA cm~2. The increase in anodic current density
should be attributed to the oxidation reactions of different oxyfluoride complexes formed
and oxygen. For a molten salt electrolyte of a certain composition after the addition of
Nd,O3 and PrgO;1, upon dissolution of the RE oxides, oxyfluoride complexes are formed.
These complexes participate in subsequent reactions at the GC anode [10,24]. Based on the
investigations carried out, it is very likely that the reactions in fluoride-based melts occur
either by oxide or fluoride exchange with the fluoride or oxide complexes present in the
electrolyte, Equations (1) and (2) [10,17,24,25]:

Nd,O3 + 2F~ — 2NdOF + O*~ (1)

Nd,O5 + [NdFg]>~ + 9F~ — 3[NdOF5]*~ 2)

Data on the dissolution of PrsO1; in corresponding fluoride melts are scarce [26].
It is known that praseodymium oxide, PrsO;1, consists of a mixture of Pr,O3 - 4PrO,,
which dissolves and forms different oxyfluorides such as PrOF [16,26]. The solubility of
praseodymium oxide in neodymium fluoride-based melts or in praseodymium fluoride
melts is similar to neodymium oxide dissolution and this is supposed to be due to the
similarities in the atomic structure of Nd and Pr [25].
Based on this, we can propose the anodic reaction for PrgOq; in which oxygen
is generated:
3[PrOF5]*~ — 6e™ =3/20,(g) + 3Pr** + 15 F~ 3)

Very small oscillations in the current density seen on the voltammograms at potentials
up to 3.00 V vs. W are probably due to the adsorption process of oxidation products
formed by the electrochemical reactions, Equations (4)—(6), and partial passivation by
oxygen-containing species at the GC anode, without turbulence by gas evolution [10,22].

Ce+ 0" = CO(g) +2e” (4)

C(s) +20% — CO;, (g)+ 4e™ 5)

Additionally, PrO, oxide present in PrsO1; spontaneously reacts with carbon, as given
in Equation (6) [26]:
PrO, +2C — Pr + 2CO (g) (6)

As further potential scans in the positive direction increase from 3.42 V to 5.00 V vs. W,
the current density increasing almost linearly, with the maximum current density reaching
values of around 1800 mA cm~2. Significant current densities are due to simultaneous
oxidation reactions of Nd and Pr oxyfluoride complexes that occur, Equations (1)—(3),
followed by oxidation, Equations (4)—-(6), and gas evolution. During the scanning in the
positive direction from fluoride-based electrolyte containing REO, LSV scan showed that the
oxygen ions on a graphite electrode produce CO and CO, according to Equations (3)—(6),
followed by the adsorption of the oxidation products on the electrode surface, and finally
CO and CO; gas evolution.

As the experiment proceeded and the potential was further scanned in the positive
direction, the current suddenly dropped and reached a value of almost 0 mA, which was
maintained until 8.00 V, the terminal anodic potential. The potential of around 4.50 V vs.
W (III), at which the current drops to almost zero value (Figure 2), is known as the critical
potential for a full anodic effect. This potential is also associated with the phenomenon of
the anodic effect in aluminium electrolysis [21,24,27].
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The anode gases measured with FTIR during the LSV experiment at the anodic end
potential of 8.00 V vs. W were composed of CO, CO,, CF,, and C;yFg, indicating that
at potentials lower than the critical potential, CO appears to be the predominant off-gas
component, Figure 3. As can be seen, the data derived from the FTIR results (Figure 3) are
in correlation with the LSV in Figure 2. The results indicate that an amount below 50 ppm
CO is always formed even if no potential is supplied to the system. This is related to the
Boudouard reaction, which describes the formation of CO or CO; as a function of the free
energy of formation independent of the temperature. Below 1000 °C, mainly CO, is formed,
while above this temperature the equilibrium is switched to the formation of CO.

2000 -

i/ mA cm™

E/Vvs. W

Figure 2. The linear sweep voltammograms recorded on a glassy carbon electrode in the NdF; +
PrF3 + LiF +2 wt.% PrgO11 + 2 wt.%Nd,Oj3 electrolyte at final potentials: (1) 4.00 V; (2) 5.00 V; and
(3)8.00 Vvs. W; T=1323 K.

It is likely that at lower potentials, only oxygen-containing species are involved in the
anode reactions and PFC emission starts at a higher potential, in this study most likely after
4.00 V vs. W [23]. CF4 emissions appear in off-gas products around the anodic effect, while
C,Fg is detected at potentials slightly higher than the critical potential with a detection
limit of about 6 ppm, indicating that fluoride species react with the graphite electrode and
CF; and C,Fg are evolved during the oxidation of fluoride ions, Equations (7) and (8) [22]:

4F~ (g)+ C(s) = CF4 (g) + 4e~ (7)

6F +2C (s) — CyFg (g) + 6~ (8)

It is supposed that during the electrolysis more chemical or electrochemical reactions
could take place on the anode and numerous unstable intermediate compounds such as
COF, or COF are formed and react further with GC, Equations (9)—(11) [27,28]:

2COF, + C (s) — CFy (g) + 2CO (g) )

4COF + C (s) — CFy (g) + 4CO (g) (10)

Also, COF, could spontaneously self-decompose (A G = —3 Jmol ! at 1233 K) according
to [27]:
2COF, — CFy(g) + CO; (g) (11)
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In addition, when the praseodymium /neodymium oxide concentration near the anode
becomes very low, the following two reactions proceed on the GC anode [26,28]:

PrF; + 3/4C (s)— Pr + 3/4CF4 (g) (12)

ANdF; + 3C (g) — 4Nd + 3CF, (g) (13)

To evaluate the gas emissions during the process, LiF used in this investigation should
also be taken into account, as it acts as a dilution agent for the melts and a donor of F~ ions,
and as such is involved in PFC formation [28]:

4LiF + C—4Li + CF4 (14)

6LiF + 2C (s)—6Li + CyF¢ (g) (15)

It can be assumed that a combination of three gases, CO, CO;, and CFy, and probably
additional gases like CyFg, COF, or COF; build up a current-impervious gas film on the
anode surface, leading to the passivation of the electrode and to a full anodic effect [29].

Previous comparable experiments have analyzed Nd or Pr oxide containing 0 wt.% [16]
up to 4 wt.% in the electrolyte [14,16] under the same conditions. When compared to the
results shown in Figures 2 and 3, with similar results obtained in previous studies [16,21],
the anode effect is shifted to a more positive potential, whose value is around 4.50 V vs.
W at 4 wt.% REO. The higher REO concentration in the melt leads to more oxyfluoride
complexes being formed, which are expected to prevent partial passivation of the GC
electrode by oxygen-containing species at a lower anodic potential. This would imply that
the rare earth oxide concentration would affect the electrochemical anode reactions, which
would explain the shifts of the critical potential values for a full anodic effect towards more
positive values [16,23].
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Figure 3. Off-gases recorded in situ with an FTIR spectrometer during LSV scan (anodic end potential
8.00 V, Figure 2) on GC electrode in NdF3 + PrF; + LiF +2 wt.% PrgOq1 + 2 wt.% Nd;Oj3 electrolyte;
T =1323K; (a) CO and CO;. . .(b) CF4 and CyF¢ off-gases measured concentrations.

The reactions and their correlations on the GC anode surface and its immediate vicinity
considered in this study during MSE from fluoride-based melts are summarized in Figure 4.
As can be seen, we have assumed REQO dissolution and two types of complexes formed,
fluorides such as [REFx ]~ and oxyfluoride [REOF]Y~, which are involved in CO,/CO
and CF4/CF¢ formation. The other was an intermediate COF,, which is reactive with many
common oxides, with a tendency to subsequently self-decompose [27].
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To better understand the anodic reactions in the RE electrolysis processes, the depo-
sition potentials and the electrolyte composition were adjusted to observe which anodic
gases evolved. The composition of the anode gases evolved during RE electrolysis in
NdF; + PrF; + LiF molten salt containing 2 wt.% of Nd>O3 and 2 wt.% of Pr¢Oy; at different
potentials was analyzed, see Figure 5. The deposition potentials were selected based on
our previous investigation. The off-gas measurements began at the time when the potential
was imposed on the system, Figure 5a,b.

COF, generation CF,and CO, generation /

Figure 4. Schematic presentation of the proposed reactions on GC anode, including COF, formation.

The anode gas products are mainly composed of CO and CO;, which is in accordance
with previous reports [19,21,22,24,30]. There is an obvious difference in the CO and CO,
gas concentrations emitted during the electrolysis. The average CO concentration was
approximately 200 ppm, while CO; concentration was approximately 100 ppm for a
deposition potential of —0.80 V vs. W, whereas for a deposition potential of —0.90 V vs. W,
CO content was on average 250 ppm and CO, concentration well below 100 ppm. After
a certain deposition time, the quantity of CO, became substantially smaller, which could
be attributed to the partial passivation of the anode active sites with oxygen-containing
ions. The continuous gas analysis shows that CF4 was detected in negligible concentrations.
CF4 was detected periodically, and, when recorded, the highest concentration was around
0.2 ppm, while C,Fg is not detected. CyFg is always formed after CF4 but in rather small
amounts, just above or below the detection limit. Therefore, these data are not reliable
and are not presented in Figure 5 or in the discussion. The potential of CO formation is
1.297 V, which is lower when compared to the one of CO; (1.454 V), which is why it is
probably formed first, resulting in a higher value in off-gas composition [31]. In addition,
CO; cannot react with the GC itself, but gas might penetrate into cracks and pores in the
anode and the Boudouard reaction takes place there, Equation (16) [32]. Consequently, the
concentration of CO in anodic gases is in agreement with the obtained results.

CO, (g) + C(s) = 2CO (s) (16)

The RE electrolysis in this study was carried out at a controlled voltage significantly
lower than the voltage imposing a full anodic effect, as seen in Figure 2. The formation of
PFC gases represented by Equations (12)—(15) is not to be expected in this potential range.
Therefore, the compatible anode voltage was controlled and the oxidation of fluoride ions
to PFCs was not achieved. PFCs are formed at significantly higher anodic potentials than
the potential associated with CO/CO; formation, indicating that this approach minimizes
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Figure 5.
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Figure 5. Off-gases generated on the GC anode recorded in situ with an FTIR spectrometer during
potentiostatic deposition at different potentials: —0.80 V and —0.90 V vs. W applied: (a) measure-
ments for CO/CO, and (b) CF, off-gas; working electrode Mo, in NdF3 + PrF; + LiF +2 wt.% PrO13
+ 2 wt.% Nd,Oj3 electrolyte; T = 1323 K.
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Other parameters that could be important for the gas emissions in RE electrolysis, such
as the applied current density at the anode, the composition of the electrolyte, the oxide
concentration, the working temperature, etc., are elaborated in [17,24,33]. Aside from the
development of non-consumable or dimensionally stable anodes (DSAs) [11], the molten
salt electrolyte composition will be one of the ways to limit CO/CO, and PFC emissions in
the future. However, more sustainable ways should be found to keep the REE production
process within strict environmental regulations.

3.2. Off-Gas Emission During Electrolysis Using Magnet Recycling Derived Oxides (MRDOs)

In the future, the development of sustainable and economically viable recycling pro-
cesses that enable the recovery of REEs reinserted into the supply chain will become an
important source of the overall RE supply. We have proposed a combination of a pyromet-
allurgical process [34] and subsequent MSE from fluoride-based molten salts [6]. Figure 6
summarizes rare earth oxide production, referred to as magnet recycling derived oxides
(MRDOs), produced directly from spent NdFeB magnets. The flow of the process is briefly
depicted in Figure 6. The methods developed by [34,35] were adopted in this research to
produce high concentrations of rare earth oxides. The process started with grinding the
magnet into powder from its initial shape (small chips). The powdered magnet was then fed
to a muffle furnace, where oxidation occurred. A vacuum induction furnace under an inert
vacuum atmosphere was then utilized to process the oxidized magnet. Stoichiometrically
calculated carbon powder was added to the magnet to perform carbothermic reduction.
The addition of carbon was also to avoid the consumption of the graphite crucible used to
contain the oxidized magnet during the process. Separation between the metallic phase
(iron-rich) and slag phase (rare earth oxide-rich) was observed during the experiment, as
shown in Figure 6. Mechanical separation was then carried out with a crusher at the end of
the process flow to obtain the rare earth slag phase (MRDO) in the form of powder, which
was easily separated from the metallic iron chunks. According to ICP-OES results, MRDO
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contains roughly 33 wt.% Nd and 10 wt.% Pr in different NdFeB-based rare earth oxides
such as DyZO3, NdOz, NdzOz, PI'509, Nd203, PrzOg, DyFeO3, and PI'NdOz [6]

The most commonly used electrolytes for the industrial production of RE metals and
alloys in MSE are fluoride-based salts that are usually composed of rare earth fluoride, LiF,
and REO dissolved in molten salts as a raw material for RE metal production.

Vacuum
Chips of magnet Pump Exhaust '
\ Muffle Furnace Crusher-2 A MRDO
Demagnetized (Powdered)
Magnet ’—’
Crusher-1 Carbon i o
Vacuum Induction A
| Air Furnace \ Slag Phase (REQ)
Powdered magnet
Metallic phase
(Iron)

Figure 6. Schematic flow diagram of magnet recycling-derived oxide (MRDO) production from
end-of-life NdFeB magnet.

Following our previous results [14], the fluoride-based melt containing 1 wt.%, 3 wt.%
or 4 wt.% of MRDO was selected for electrochemical measurements and RE electrolysis
in this study. Figure 7 presents the LSVs recorded for different MRDO contents in the
fluoride electrolyte.
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Figure 7. The linear sweep voltammograms recorded on a GC electrode in the NdF; + PrF; + LiF
electrolyte containing (a) 1 wt.% of MRDO; (b) 3 wt.% of MRDO; and (c) 4 wt.% MRDO at different
end potentials, T = 1323 K.
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For a direct comparison of electrochemical measurements, the basic electrolyte com-
position of 64.41 wt.% NdF; + 21.37 wt.% PrF; + 12.5 wt.% LiF was maintained. The
voltammograms were scanned at 5 mV/s, consistent with previous experimental condi-
tions. Magnet recycling derived oxide (MRDO) concentration in the electrolyte was the only
controlled variable. The conditions for the experiment were selected to attempt to quantify
the environmental impact of this process, since there are not many results regarding PFC
emissions from the recovery of REEs from recycled magnets. As can be seen in Figure 7b,c,
in the voltammograms presented, the oxidation current (I) starting at a potential around
1.00 V probably originates from the impurities in the electrolyte. In this particular case,
the MRDO consists of different REOs accompanied by various iron/boron compounds.
The oxidation of the oxygen ions generated by these impurities” dissolution participate
in the subsequent reaction in contact with the glassy carbon anode. The appearance of
the anodic peak (II) in the voltammogram in Figure 7a recorded with 1 wt.% of MRDO
added to the NdF; + PrF; + LiF electrolyte occurs at the potentials between 1.50 V and
2.00 V vs. W, with the oxidation peak current density ~# 200 mA cm~2. An increase in
oxidation current starting at about 2.00 V is also attributed to the oxidation of oxygen ions
under gas evolution conditions until ~3.00 V, Figure 7a. At the peak potential (III), the
oxidation current density reaches 500 mA cm~2, before dropping to 0. This sudden drop in
the current manifests the full anodic effect.

At 3 wt.% MRDO added to the electrolyte, Figure 7b, in the voltammograms, the peak
current density (II) at potential ~ 3.00 V vs. W reaches a value of around 650 mA cm~2. The
current density then drops to a lower level, indicating a partial anodic effect, until the value
rises again. Finally, the peak current density (III) increases and reaches 1300 mA cm 2, at an
anodic peak potential around 3.50 V. The observed maximum current density at a potential
around 3.50 V vs. W is followed by a sudden current fall, manifesting the full anodic effect;
this time shifts slightly positively compared to the value in the LSV in Figure 7a. With
4 wt.% of MRDO in the fluoride-based melt, the maximum oxidation current density (III)
at an anodic peak potential around 4.50 V, before dropping to 0, was about 2000 mA cm 2,
which is a characteristic of the full anodic effect, as shown in Figure 7c.

The fact that the oxidation current density Increases with Increasing MRDO content in
the fluoride-based electrolyte, and that the critical potential shifts towards more positive
potentials, proves that the full anodic effect depends on the REO content.

The FTIR analysis of the anode gas composition during LSV measurements on a
graphite anode in NdF; + PrF; + LiF molten salt containing 4 wt.% of MRDO is shown in
Figure 8, where one exemplar measurement for clarity is presented. Once again, excellent
agreement with our previous experiments is noted (Figure 3). FTIR results showed that
until an anode effect occurs, CO and CO, were the main off-gas components, with CFy
also detected in the anodic gases around the critical potential. The appearance of CyFg
in the anodic gases follows after CF, evolution, showing the same tendency as in the RE
electrolysis with raw REO, but at a significantly lower value of ~3.5 ppm as the highest
recorded value. To sum up LSV experiments, the anodic peak maximum current density
at the glassy carbon anode, within the scanned potential range, especially between the
partial and full anodic phenomenon, depends on the rare earth oxide concentration in
the electrolyte. The same tendency can also be seen in the correlation between the peak
potential and the fraction of CO/CO, or PFC in the off-gas composition. This means that
the RE oxides in MRDO are dissolved and the oxyfluoride complexes formed shift the
critical potential values towards more positive potentials and disable the recognition of
partial passivation by oxygen-containing species. This is similar to what was previously
reported about the influence of REO on the anodic effect [24]. This is a further indication of
the validity of MRDO used in RE electrolysis. When comparing LSVs, (Figures 2 and 7c)
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Gas / ppm

with 4 wt.% of REO and MRDO added to the melt, the full anodic effect is around 4.50 V in
both cases, indicating that MRDO can be used as an REE raw material in electrolysis. Based
on these results, most of the REO from MRDO produced from spent magnets appears
fully dissolved in the molten fluoride mixture. Dissolved species participate in the anodic
processes, producing CO,/CO and CF; in almost the same way as in RE electrolysis with
raw REO. The only difference observed in the system with 4 wt.% MRDO is that the
resulting current density increases again after the anodic effect, Figure 7c. Most likely,
a very small area of the surface becomes gas-free for a short time, which is associated
with PFC formation, leading to new gas bubbles again adsorbed on the anode, forming an
insulating film.
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Figure 8. Off-gases generated on the GC anode recorded in situ with an FTIR spectrometer during
LSV scans of Figure 7c anodic end potential 7.00 V vs. W, in NdF;3 + PrF; + LiF + 4 wt.% MRDO
electrolyte; T = 1323 K; (a) CO and COs;. . .(b) CF, and C;,F¢ off-gases concentrations measured.

To quantify potential environmental impacts concerning greenhouse gas emission
from the fluoride-based MSE process, we investigated the off-gas composition during REE
extraction from NdF; + PrF; + LiF + 4 wt.% MRDO, Figure 9. Our previous experiments
have shown that REEs can be successfully extracted by continuous electrolysis under certain
process conditions [6]. This is only one average value of a minimum of three experiments
involving laboratory measurements; therefore, the off-gas concentration values should
be considered more for the qualitative description of the systems and processes than
for quantification. However, for a sustainable process for RE electrolysis and RE metal
production, it is still important to estimate emission factors that should at least minimize
CO, and PFC emissions.

The composition of the off-gases during RE electrolysis from fluoride-based melts
with MRDO is qualitatively consistent with that observed in conventional RE electrolysis
with REOs as raw materials. In the RE electrolysis experiments with MRDO added to the
fluoride-based melt, only minor amounts (<20 ppm) of CO are present at the beginning of
the process, Figure 8a, due to the consumption of the high-purity graphite anode due to
the reaction, Equation (16). The results show that off-gases are composed of CO, CO,, and
CFy, as seen in Figure 9. At the beginning of the electrolysis, the portion of CO, gases in
off-gases is a little bit higher than CO, showing the same tendency during the electrolysis,
but with a significantly higher amount (approximately 200 ppm) than RE electrolysis with
REOs as raw materials, where on average the CO; concentration in off-gases is around
50 ppm. Conversely, the average value of CO in off-gases is approximately 100 ppm,
significantly lower than in RE electrolysis (250 ppm) with REOs as raw materials. The
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content of CO/CO; in off-gases remained relatively unchanged, showing the stability of
the process. However, there were some spikes detected periodically, which depicted a
significantly higher CO/CO, concentration in off-gases, but never above 500 ppm. CF4 was
detected in negligible quantities, as was the case in the previous electrolysis experiments.
This further indicates that the electrodeposition of REEs within the applied potential range
occurs at the expense of their corresponding oxides, provided by MRDO.

8
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Figure 9. Off-gases generated on the GC anode recorded in situ with an FTIR spectrometer during
potentiostatic deposition at potential of —0.90 V vs. W; working electrode Mo, in 64.41 wt.% NdF; +
21.37 wt.% PrFs + 12.5 wt.% LiF+ 4 wt.% MRDO electrolyte; T = 1323 K.

Some of the possible reasons may be due to the following: (i) CO; is also formed as a
consequence of a back reaction from dissolved oxides/metals from MRDO. (ii) Primary
anode reactions and the Boudouard reaction proceed with chemisorbed C-O complexes
as an intermediate step. The complexes formed can occupy almost the entire electrode
surface without leaving free sites for the Boudouard reaction, leading to CO, formation
as the preferred reaction [36]. (iii) Various REOs and metals (M;) present as impurities in
MRDO are dissolved and participate in forming various RE/M;-O-F complexes, which
subsequently take part in simultaneous electrochemical anode reactions, working in favor
of CO,. In addition, CF, is also present in off-gases and some of the current is probably
used for fluoride ion discharge, leading to a reduction in the rate of CO formation [21].
CO and CO; are the main off-gas components, indicating that during the electrolysis
at the chosen potential only oxygen-containing species are involved in anode reactions,
Equations (4)—(6). However, this simplified picture is most likely not compatible with the
complex multivalent redox transitions prevalent in REE extraction by MSE using MRDO.
The agreement between the FTIR data of off-gas compositions within a range of REEs
through raw REO and MRDO leads us to believe that the RE electrolysis process governed
by MRDO obtained by the pyrometallurgical method captures the key electrolysis process
that governs the REE extraction of end-of-life products.

4. Conclusions

The present study leads to the following conclusions related to greenhouse gas emis-
sion during REE extraction from fluoride-based molten salts composed of raw REO and
REO from MRDO:



Materials 2025, 18,184

14 of 16

References

(i) It was demonstrated that the critical potential for a full anode effect is around 4.50 V
at 4 wt.% raw or MRDO REO. Increasing the REO content from 1 wt.% up to 4 wt.% in
the system leads to a more positive shift in the critical potential for a full anode effect.

(if) The FTIR results from on-line off-gas analysis during LSV measurements displayed
that the anode gas products were composed mainly of CO and CO,, whereas CF,
was detected before the full anode effect and C,F¢ was emitted during and after
this phenomenon.

(iii) The dissolution of REO in fluoride-based melts leads to the fluorides such as [REFx]Y~
and oxyfluoride [REOFx]Y~ complexes involved in CO,/CO and CF,/C,F4 formation
on the anode. A schematic presentation that incorporates the complex formation and
its subsequent reactions on the GC anode surface was developed.

(iv) The main off-gas component in RE electrolysis with REO as the raw material is CO.
In contrast, the CO; content was slightly higher than the CO content in electrolysis
with oxides derived from magnetic recycling (MRDOs). PFC emissions during RE
electrolysis were generally similar: CF4 was detected periodically, but in negligible
concentrations, while CpFg was not detected. It is likely that various REOs dissolved
from MRDO are involved in back reactions occupying almost the entire electrode
active surface without leaving free sites for the Boudouard reaction, leading to CO,
formation as the preferred reaction.

(v) The experimental results using LSV and FTIR measurements demonstrate that the fu-
ture development of REE recycling from molten salts composed of MRDO is expected
to be an innovative method due to its environmental impact benefits.
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