Synergistic Hydrometallurgical Treatment for Pyrolysed and Flotated Black Mass from the Spent Li-lons Batteries

AP 4: Cleaning of flotation products and development of a recycling concept

J. Wijaya¹, H. Chung¹, A. Vanderbruggen², M. Rudolph², B. Friedrich¹

¹RWTH Aachen University | Institut für Metallurgische Prozesstechnik und Metallrecycling (IME) ²Helmholtz Zentrum Dresden Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF) Mail: hchung@ime-aachen.de

Recovery of graphite from flotation products

Initial Situation / State of Research

Tailings fraction (<10% C)

- Froth floatation from AP 3 produced overflow and underflow fractions
- Overflow consists mainly of carbon
- Underflow consists mainly of metal oxides
- Floated materials contain large amount of valuables to be extracted
 - → Hydrometallurgy Treatment

Methodology

Two steps hydrometallurgical treatment developed

- Extractive -> Graphite/carbon recovery
- Purification → Metal recovery

- 2 Typs of acids tested: Sulphuric and Hydrochloric
- Input materials : Tailing fraction (<10% C)
- → tailing graphite cake and metal-rich PLS (pregnant leaching solution)

Stage 2 leaching with metal-rich PLS

Stage 2 tested leaching with metal-rich PLS

- Input materials: Concentrate Fraction (~80%C)
- → Graphite cake with metal rich solution for metal recovery

Results

- Best case parameters determined from Experiment P4
- KPI for graphite purity > 98% achieved in P4

Concentrate leaching on its own show very high graphite purity

- Experiment paramaters vary in terms of acid concentration (2-4) mol/L) and temperature (40°C or 60°C)
- Repeated experiments conducted with 4 mol/L sulphuric acid

Sources and own publications

1. J.Wijaya, P. Sabarny, B. Friedrich, Synergistic Hydrometallurgical Treatment for Pyrolysed and Flotated Black Mass from the Spent Li-Ions Batteries, Master Thesis, submitted March 2023

Acknowledgements

The project on which this poster is based was funded by the German Federal Ministry of Education and Research within the Competence Cluster Recycling & Green Battery (greenBatt) under the grant number 03XP0326 The authors are responsible for the contents of this publication.

