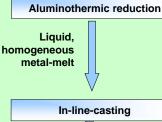
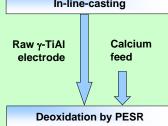
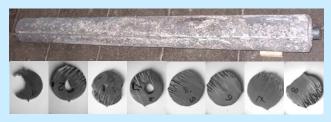
Motivation

- γ-titanium aluminides show superior mechanical properties at high temperatures
- Large scale application of these alloys is still hindered by high material cost
- TiAl is currently produced by VAR from titanium sponge, aluminium and master-alloys
- Challenges in today's production include homogeneous alloying and the high price of materials
 - → An alternative processing route was designed and has reached pilot scale, starting from readily available,


cheap raw-materials.



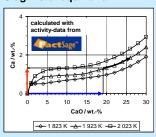
Raw materials: TiO₂ pigment alloying oxides Al powder, booster



Deoxidized γ-TiAl ingot: Ø 160 mm 50 kg

Pilot scale PESR Max. P=50 bar Power supply: 400 kVA

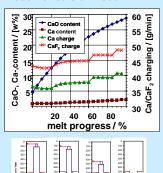
PESR results


Characterisation of obtained ATR electrodes

Section	1	2	3	4	5	6	7	8
wt.% Ti	46.58	44.73	47.46	47.48	47.38	47.40	47.96	48.35
wt. %Al	27.41	28.20	26.75	27.30	23.35	27.43	27.13	26.30
wt.% Nb	16.66	16.26	17.34	17.16	17.04	17.16	17.33	17.08
wt.% C	0.17	0.092	0.122	0.071	0.12	0.076	0.087	0.075
wt.% O	1.69	2.57	1.36	1.19	1.85	1.14	0.69	1.34
ppm N	132	75	39	86	108	90,5	59	55

Modelling for PESR control

K -	a([CaO] _{slag})	·a([Ti] _{metal})_	f(T) ≡ const constant
variable	a([Ca] _{slag})	a([O] _{metal})	constant


Slag metal equilibrium

- slag temperatures ~1700°C, strong reducing conditions, fluorine melt
- no possibility at present for on-line measurement of Ca and/or O activity
- control of slag chemistry by modeling using equilibria calculations and mass balancing

- slag system: CaF₂ CaO Ca_{met}
- deoxidation and formation of CaO
 [TiO]_{TIAI} + [Ca]_{CaF2} ⇔ [Ti]_{TIAI} + [CaO]_{CaF2}

Model for calcium feed

predicted metal/slag progress during PESR of oxygen containing TiAl ingots

Conclusions

- IME proves a concept for direct TiAl production starting with aluminothermic reduction of pigment.
- Oxygen uptake during ATR could easily be reduced from 16.000 ppm to 2000 ppm by PESR
- Process optimisation by adjusting Ca-feed aims on final oxygen contents of <500 ppm
- Inevitable Ca uptake amounts to 1000 ppm and has to be removed by final VAR

e-mail: bfriedrich@ime-aachen.de

TiAl cost can be reduced by factor 2-3

Contact: Prof. Dr.-Ing. B. Friedrich IME Process Metallurgy and Metal Recycling RWTH Aachen University Intzestr. 3, 52056 Aachen, Germany Phone: +49 (0)241 80 95850

