Improving Copper Heap Leaching

Background:

- annually rising demand of copper ⇒ increasing prices
- ca. 20 % of primary world Cu production by heap leaching processes + SX/EW
- so far recovery of conventional heap leaching processes range by 75-80 % of the ore's Cu-content during leaching periods of several months

Improve productivity (recovery and leaching time) **Target:**

by addition of wetting agents

Heap leaching:

Depends on solid-liquid-interactions at phase boundaries, capillaries

Theory:

According to Washburn eq. the penetration length In of a fluid into a capillary is

$$l_p = \sqrt{\frac{r_K \cdot t_p \cdot \gamma_L \cdot \cos \theta}{2\eta}}$$

and 1st Fick's Law the total leaching time t(F=1) of an ore particle is

$$t(F=1) = \frac{2B \cdot r_0^5 \cdot \tau}{3V_{m,Cu} \cdot D \cdot C_{A,0} \cdot n_K \cdot r_K^2} \cdot \sqrt{\frac{2\eta}{r_K \cdot t_p} (\gamma_L \cdot \cos \theta)}$$

can be influenced by wetting agents

Requirements on wetting agents for heap leaching:

- good wetting performance
- improved capillary penetration
- no negative impact on further processing steps (SX-EW)
- stable in acid solution
- low foaming
- biodegradable, no eco-toxicity

wetting agents which meet these requirements.

BASF SE has been developing tailor-made **Simulating** heap leaching at IME-facilities

additive column 1 + 2

nonionic surfactant (fatty alcohol alkoxylate) nonionic surfactant (fatty alcohol alkoxylate) anionic surfactant (alkyl ether sulfate)

Results:

- rise of Cu-recovery
- improvement in leaching kinetics

Contact: Matthias Vest

IME Process Metallurgy and Metal Recycling, RWTH Aachen

Intzestr. 3, 52056 Aachen, Germany;

Tel.: 0049-(0)241-8095191; Email: MVest@ime-aachen.de

