Nanosized metallic oxides produced by Ultrasonic Spray Pyrolysis

Main aims

- 1. Synthesis of TiO₂ nanoparticles using an ultrasonic spray pyrolysis method
- 2. Examination of influence of the most critical process step (evaporation/precipitation) on particle morphology
- 3. Determine which parameters favour dense and spherical particle formation

Obtained TiO₂
nanopowder is applied in gold layers of electrical contacts with a goal to increase the mechanical properties and life time of these coatings, without decreasing electrical conductivity.

Experimental method

Temperature (°C): 250-800-300 and 800-800-300

Ultrasonic frequency (MHz): 3*2.5

Atmosphere: N₂ Flow rate (I/min): 4-10

C₁₆H₃₆O₄Ti concentration: 6g/l

Mechanism of USP- synthesis

Main steps: evaporation of solvent, diffusion of solutes, precipitation, decomposition and densification.

Process temperature, droplet size and evaporation rate are the main parameters that influence particle morphology

Main parameters that influence particle morphology:

Measured temperature profile in reactor for different flow rates and temperature regulation in heating zones

Results

Different morphology of TiO₂ nanoparticles were obtained and optimal condition for formation of dense particle is suggested

Conclusion

- It is possible to produce nanosized TiO₂ with USP
- High evaporation rate lead to destroyed, non spherical particle
- To avoid formation of non spherical particles it is recommended to have reactor with slowly increasing temperature profile

Acknowledgement:

We would like to thank Federal State North Rhine-Westphalia and programme
"NanoMikro+Werkstoffe.NER" for the financial support on the project "NanoGold". Our special thanks to our project partners Hochschule Ostwestfalen-Lippe, Lemgoro and Enthone GmbH, Langenfeld, Germany.

