Synthesis of spherical nanosized copper powder by ultrasonic spray pyrolysis

Target: Synthesis of spherical nanosized Cu-powder

- very fine grain size, high uniformity and big specific surface
- better in many applications than commonly used Cu-powders (not possible to produce with electrolytic or hydrogen reduction of CuSO₄ in an autoclave)

Idea and method

- •Ultrasonic spray of Cu-sulfate-solutions (aerosol formation)
- hydrogen gas reduction pyrolysis
- •Use of copper acetate (CH₃COO)₂Cu instead of CuSO4
- •Use of HCOOH instead of hydrogen gas for reduction

Principle of ultrasonic spray pyrolysis

Calculation of aerosol droplet size

Transformation of aerosol droplets into particles

1. Evaporation 2. Precipitation 3. Drying 4. Reduction

Reaktion parameters

- •temperature (800°C 1000°C)
- •concentration of CuSO₄ and CuAc (0.05 0.2 mol/l)
- concentration of HCOOH (3-6 mol/l)
- •flow rate of hydrogen (11/min)

SEM micrograph of Cu- Powder (T=1000°C, c_{CuSO4} =0.05 mol/l)

SEM micrograph of Cu-Powder (T=1000°C, C_{HCOOH} = 0.2 mol/l)

Ultrasonic spray of CuSO₄ and (CH3COO)₂Cu solutions followed by hydrogen reduction pyrolysis is suitable for the synthesis of spherical non-agglomerated particles of Cunanopowder.

Contact: nanoworld@ime-aachen.de Prof. Dr.-Ing. B. Friedrich IME Metallurgische Prozesstechnik und Metallrecycling RWTH Aachen

