6th International Copper-Cobre Conference, Toronto, 2007

Electrolytic treatment of highly contaminated effluents from copper smelters

S. Stopić; A.Widigdo; B. Friedrich

IME Process Metallurgy and Metal Recycling RWTH Aachen
Prof. Dr.-Ing. Bernd Friedrich

Highly contaminated effluents from RTB Bor, Serbia

Wastewater from Electrolyte-, precious metals and electrolyte regeneration plant

Flow rate: 45 m³ /day (50.000 t Cu/a) Cu:approx. 8 g/l

pH: 0 - 0.27

Highly contaminated effluents from RTB Bor, Serbia

	Concentration, g/dm ³	Analytical method
Cu	8.33	AAS
Ni	0.66	AAS
As	0.63	AAS
Se	0.26	ICP-AES
Fe	0.086	AAS
Sb	0.075	ICP-AES
Te	0.068	ICP-AES
Al	0.04	ICP-AES
Zn	0.034	AAS
Bi	0.028	ICP-AES
Si	0.022	ICP-AES
Pb	0.0034	AAS
Mn	0.0011	AAS
Cd	0.0001	AAS
H ₂ SO ₄	120.79	T/V
CI-	0.07	TU

Wastewater from Electrolyte-, precious metals and electrolyte regeneration plant

Flow rate: 45 m³ /day (50.000 t Cu/a) Cu:approx. 8 g/l

pH: 0 - 0.27

Main aims

- electrochemical <u>pre-treatment</u> of highly contaminated and strong acidic industrial wastewaters
- applying a <u>continuous</u> technology with high specific surface area - using of rotating disc cathodes
- metallic recovery of copper as powder product
- determination of best process operation conditions regarding metal deposition rate as well as solution and metal purity
- optimized current density to avoid the formation of arsine safety issue

Concept of Metal Removal

wastewater

electrolytic treatment with rotating discs

continuous precipitation

purified wastewater

Theoretical Background of Electrolytical Treatment

Challenges of electrolytic treatment of As-solutions

Joint deposition of other metals (Se, As, Sb,...) with Cu:

Cathode: $Cu^{2+} + 2e^{-} = Cu$

Competing cathode reaction: $2 H^+ + 2e^- = H_2$

Anode: $H_2O = 2 H^+ + \frac{1}{2} O_2 + 2e^-$

Formation of highly toxic AsH₃ (ARSINE) and SbH₃ (STIBINE)

$$2 \text{ As}^{3+} + 3\text{H}_2 = 2 \text{ AsH}_3 + 6 \text{ e}^{-}$$

$$2 \text{ Sb}^{3+} + 3\text{H}_2 = 2 \text{ SbH}_3 + 6 \text{ e}^{-1}$$

Prevention of AsH₃-formation by FeAsO₄-deposition or by avoiding hydrogen formation (optimized current density)

Electrolytic Treatment - Experimental Setup

Technical data of the electrolytic cell:

cell length/width/height: 34/13/20 cm working cell volume: 3l (both cells)

cathode type: stainless steel discs

cathode diameter: 30 cm

total immersed cathode area: 940 cm²

two cathode discs parallel

anode type: basket with titanium grid basket length/width/height: 30/2,5/15 cm

electrolyte flow:

- a) from cell to cell
- b) through basket to cathode

Electrolytic treatment – Experimental Parameters

Parameters:

temperature: 20-22°C (!)

deposition time: 5, 10 and 20 h

average cell voltage: 2.3 V

current density: $50 - 80 - 100 \text{ A/m}^2$

current: 4.7 - 7.5 - 9.9 A

cathode revolutions: 2 rpm (!)

flow rate: 0.5 - 1.0 - 2.0 l/h

active surface: 0,094 m²

c-c distance: 30 mm

c-a distance: 15 mm

Electrolytic treatment - Experimental part

Experiment No.	current density (A/m²)	Volume flow (I/h)	solution type
1	240	0.5	Synthetic
2	80	0.5	Synthetic
3	50	0.5	Synthetic
4	80	1.0	Synthetic
5	80	2.0	Synthetic
6	50	0.5	Real
7	80	0.5	Real
8	100	0.5	Real
9	80	1.0	Real
10	80	2.0	Real

Electrolytic treatment - Results (deposition)

synthetic wastewater

real wastewater

fine layer of powder

black powder directly after test start

a dark reddish gray deposition after 60 min

Electrolytic treatment- Results (current density)

- change of current density from 50 A/m² to 100 A/m² increases the metal removal for Cu, As, Te
- metal removal of Se is always high
- in case of Zn the current density has no influence

Electrolytic treatment - Results (current density)

current		Concentration (mg/l)					
density (A/m²)	Cu	As	Zn	Se	Te	Bi	Sb
Start	8330	630	34	260	68	28	75
50	3790	544	35.8	8.93	29.4	5.1	80.3
80	478	62.7	31.2	5.0	9.6	8.4	25.7
100	308	42.2	32.1	1.4	5.5	4.5	29.4

Electrolytic treatment alone can not ensure metal concentration in the allowed values

Electrolytic treatment - Results (flow rate)

content (g/l)	Initial	0.5 l/h	1.0 l/h	2.0 l/h
Cu	8.33	0.478	2.86	3.54
As	0.63	0.063	0.49	0.52
Se	0.26	0.005	0.0613	0.0862
Zn	0.034	0.0312	0.032	0.0337

Electrolytic treatment- ICP, SEM and EDX Analysis

Typical EDX Analysis from the powder deposit

ICP analysis of powder composite in %:

80 Cu, 4 As, 3 Se, 0.6 Te, 0.4 Sb, 0.2 Bi,

0.2 Si, 0.1 Zn, 0.02 Pb, <0.01 Al, Ni, Mn, Cd

Conclusions

- Copper was deposited with removal efficiencies of >95% from wastewater with 8.3 g/l Cu and 120.8 g/l H₂SO₄ in a continuous electrolytic cell with rotating discs at room temperature
- suitable operation parameters are 0.5 l/hour (flow rate) and 100 A/m² (current density) due to safety reasons
- current efficiency for 100 A/m² is 58 %
- electrolytic treatment alone can not ensure the legally prescribed metal concentration requirements

Next steps:

- used of platined titanium instead of stainless steel
- improving of the collection method

6th International Copper-Cobre Conference, Toronto, 2007

Thank you for your attention

The authors gratefully acknowledge the financial support of the European Commission for the Research Project INTREAT (INCO-CT-2003-509167), within the Sixth Framework Programme for Research and Development.

IME Process Metallurgy and Metal Recycling RWTH Aachen University, Germany Prof. Dr.-Ing. Bernd Friedrich

Existing Technologies for electrolytic WW-treatment

Two companies offer rotating cylinder electrode technology:

- 1. Electrometals Electrowinning EMEW® Cell- Australia
- 2. "Elektrolyse und Umweltschutz" Eilenburg

The electrolyte is circulated rapidly past the anode and cathode at a higher flow rate, allowing for improvements in efficiency and recovery. The electrolyte is pumped through the cell from the bottom.

